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Development and testing of a simple 2D �nite volume model
of sub-critical shallow water �ow
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SUMMARY

Many environmental applications of shallow water �ow modelling can be characterized as only slowly
varying and everywhere sub-critical. A simpli�ed �nite volume model is therefore developed that is
capable of describing pertinent shallow water �ow processes more e�ciently than the usual Godunov/
Riemann characteristics approaches. The model is tested against a number of analytical and numerical
solutions to the governing equations. The model reproduces accurately �ow round a circular bend, �ow
over topography, �ow up an initially dry beach and �oodwave propagation down a meandering river
reach, with mass conservative solutions. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Finite volume methods have long been popular for the modelling of environmental �ows
whose behaviour is well described by the two-dimensional (2D) shallow water equations
[1–7]. The application of �nite volume techniques in this context follows directly from the
earlier application of 2D compressible �ow for aerodynamic problems, which is made possible
because of the close analogy between the equations for 2D compressible �ow and shallow
water �ow. Furthermore, there are phenomena such as wave and shock propagation that can
be observed in both aerodynamic and shallow water �ows. The treatment of these phenomena
is not straightforward and sophisticated numerical schemes are required to avoid inaccurate
solutions in their presence, which results in lengthy development and computation times for
such methods. It is not clear, however, that such an approach is required for many environ-
mental �ows, and as such traditional �nite volume approaches may represent a misuse of
resources. The speci�cation for the design of a numerical model of shallow water �ow is
therefore re-appraised in this paper, and the simplest solution to the modelling problem is
sought.
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1232 M. HORRITT

The development of numerical models of environmental �ows involves two stages: identi-
�cation of an equation base suitable for adequately describing signi�cant hydraulic processes,
and then development of a numerical scheme for the solution of these equations. Most mod-
elling schemes are based on the 2D shallow water equations, partly for the pragmatic reason
that 3D schemes, which may be required to represent secondary �ows in compound channels,
are computationally intensive, and thus limited to small-scale studies of in bank �ows. That
convention is followed in this paper, and thus the governing equations for continuity and
conservation of momentum are:

@h
@t
+∇·(uh) = 0 (1)

@u
@t
+ (u·∇)u+ �t

h
∇(h∇·u) + g∇(h+ z) + gn

2|u|u
h4=3

= 0 (2)

h is the �ow depth, u=[u; v]T is a 2D depth-averaged �ow velocity vector, z the bed elevation,
g the acceleration due to gravity, n Manning’s coe�cient of roughness and �t a turbulent
eddy viscosity which parameterizes horizontal turbulent momentum transfer. Equation (1) is
satis�ed by the �ow irrespective of its 2- or 3D nature, as long as water is not lost or
gained in signi�cant amounts at the �uid’s upper and lower boundaries through evaporation,
rainfall or interaction with a groundwater system. These processes will contribute source
terms with very small magnitudes (typically mm per hour), and therefore any �ow model is
required to generate mass conservative solutions satisfying (1). The terms of the momentum
equation (from left to right) are: acceleration, advection, turbulent momentum transfer, free
surface gradient and bed friction. For environmental �ows we will often be confronted with
rough and vegetated beds, and topographic features spread across many spatial scales. The
treatment of topographic and friction source terms is therefore of vital importance in this
application. These are terms which are often neglected in �nite volume models where the
emphasis lies in the treatment of shock phenomena. Flows with steep velocity gradients (which
can be topographically induced) will also generate signi�cant advection terms (for example
in meandering channel �ow [8]), and so this term must be included. Time derivative terms
will be important in reproducing dynamic behaviour such as �oodwave propagation and tidal
�ows in response to changing boundary conditions. Low topographic slopes on �oodplains
and the presence of tidal �ats may produce a moving or free boundary problem, and so some
method of dealing with a moving or uncertain shoreline is also required. The turbulence term
(here represented by a simple eddy viscosity model) may also be important, for example
if a shear zone develops between the channel and �oodplain [9], but is di�cult to quantify
[10] especially in the presence of vegetation [11]. Turbulence is also likely to be highly three-
dimensional in nature and hence a 2D model is unsuitable for modelling �ows at scales where
this interaction is important. This term is therefore neglected in this study, but remains an
issue for future research when further laboratory and �eld experiments allow its measurement
and parameterization for shallow water �ow models. The presence of vegetation may also
introduce vertical velocity structures which depend strongly on plant properties and therefore
Manning’s equation may not be appropriate for modelling these interactions, and again a fully
3D model may be required.
Having identi�ed the processes to be represented in a 2D �ow model, we now aim to solve

the governing equations using a suitable numerical technique. The necessity of including
processes across a range of spatial scales means that techniques capable of operating on
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SIMPLE FINITE VOLUME MODEL OF SHALLOW WATER FLOW 1233

unstructured meshes [12] will be more appropriate than those such as the �nite di�erence
method which rely on structured and often regular meshes. The �nite element method has
been used with irregular meshes of triangular or quadrilateral elements to model �oodplain
[13–16] and estuarine [17, 18] �ows, but although the �nite element method can be shown
to be globally absolutely mass conservative [19] it may still produce solutions with local
mass conservation errors in some implementations [8]. The �nite volume method is therefore
adopted here. The traditional �nite volume approach starts by casting the governing equations
into a form relating the time derivative of the solution �eld to the divergence of associated
�uxes, with source terms taken into account:

@
@t


 hhu
hv


+ @

@x


 uh
u2h+ gh2=2

uvh


+ @

@y


 vh

uvh
v2h+ gh2=2


+ S=0 (3)

S is a vector of source terms due to bed slope, bed friction, etc. When this equation is
averaged over a �nite volume element and the divergence theorem applied, the rate of change
of the unknowns h, hu and hv, is related to the normal �uxes across the boundary of the
element:

Ai
@Ui
@t
=−[(Fn)ijLij + (Fn)ikLik + (Fn)ilLil]−

∫
Ai
S dA (4)

Ui=[h; hu; hv]T, etc. are the solution vectors de�ned at the centroids of the elements, Fn
are the normal �uxes at each edge, Lij, etc. are the lengths of the edges (Figure 1), and
Ai is the area of the element. Since the unknowns are represented as point values at the
centroid of the element, the �nite volume technique hinges on an appropriate interpolation
method to express the �uxes at the cell boundaries. The crux of a �nite element model is thus
devising an interpolation method that ensures conservation of mass and momentum between
time steps. The problem is not trivial: the �uxes must be interpolated at edges where the
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Figure 1. Notation for �ux calculations at element edges.
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solution is unde�ned because of the piecewise constant nature of the discretised variables, and
the problem is exacerbated by the non-linearity of the �uxes’ dependence on the solution.
The interpolation techniques presented so far in the literature are manifold. Most use the

Godunov approach, whereby the calculation of the �uxes is transformed into a discontinuous
initial value problem in a 1D local co-ordinate system normal to the cell edge, called the
Riemann problem. There are many approaches to solving the Riemann problem, the solver
of Roe [20] being one of the most popular [2, 3, 5, 6, 21–23]. According to the Roe scheme,
the normal �ux Fn at the boundary can be written in terms of the �uxes on the left and right
sides of the edge (FL and FR) and the solution values at the cell centres to the left and right
of the edge (UL and UR):

Fn= 1
2(FL + FR) + |A|(UL −UR) (5)

The �ux Jacobian matrix A= @F=@U is then evaluated using appropriate mean values of the
solutions to the left and right of the edge. The Roe solver has been used to good e�ect
for shallow water �ow solvers, generating mass conservative solutions that predict well the
propagation of hydraulic jumps. Other techniques have been developed to solve the Riemann
problem in a �nite volume=shallow water context, such as the scheme of Osher [24, 25] and
the Harten–Lax–van Leer scheme [26, 27]. Other numerical ruses such as �ux limiters [2, 21]
and various upwinding schemes [28, 29] also need to be used to avoid spurious numerical
oscillations and under- or overshoot near shocks.
Such techniques represent e�ective generalized methods for generating solutions of the

shallow water equations, with a solid grounding in characteristics theory, and are capable
of reproducing hydraulic jumps without mass balance errors or spurious oscillations in the
solution, as long as appropriate numerical techniques are used. Indeed, without any a priori
knowledge of the nature of the solutions, these sort of techniques will be the best to use.
However, because of the signi�cant computational burden imposed by these numerical tech-
niques, their application in scenarios where, for example, the sub-critical nature of the �ow is
observed may be wasteful. The solutions to most lowland �uvial �ood problems for example
are sub-critical. It is clear therefore that there is a class of environmental �ows for which an
approach simpler to the shock capturing techniques discussed above can be adopted to good
e�ect, as long as the relevant hydraulic processes discussed above are incorporated. A simple
�nite volume (SFV) model for this class of problems is therefore presented and tested in this
paper. Section 2 describes the development of the model, which is tested against analytical
solutions of the shallow water equations, and mass balance errors measured, in Section 3.
Results are discussed and summarized in Sections 4 and 5.

2. MODEL DEVELOPMENT

A discretized solution to (1) and (2) is sought over an unstructured mesh of triangular ele-
ments, for each of which the area averaged quantities hi, (hu)i and (hv)i are de�ned. Thus,
for a mesh of N elements the model will solve for a vector of 3N unknowns at each time
step. The treatment of the continuity equation, the momentum equation, boundary conditions,
time development and wetting and drying are now described.
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2.1. Continuity equation

Integrating the equation over a �nite volume �i with boundary �i and outward normal unit
vector n, and applying the divergence theorem, gives

@hi
@t
+
1
Ai

∫
�
(uh)·n d�=0 (6)

For the triangular elements used here the integral around the element is written as the sum
of the contributions from each edge (with notation as depicted in Figure 1):

@hi
@t
+
1
Ai
((Fn)ijLij + (Fn)ikLik + (Fn)ilLil)=0 (7)

The normal �uxes are the scalar product of uh and the outward normal to the edge, (Fn)ij=
(hu)·nij, etc. Two methods are used for the interpolation of hu. First-order interpolation simply
uses the mean of the values to the left and right of the edge:

(Fn)ij=
1
2
((hui + huj)(nx)ij + (hvi + hvj)(ny)ij) (8)

A second-order scheme uses the values at surrounding nodes to make an improved estimate of
the value of the variable at the cell edge (Figure 2) [21]. The interpolated depth, for example,
is written as

hL = hi + r·∇h= hi + rx @h@x + ry
@h
@y

(9)

hl

hk
hi

hj

hL

rij

Figure 2. Second-order interpolation of �ow depth h. rij is the displacement vector between the cell
centre and the mid-point of the edge. The local gradient is calculated from the neighbouring elements.

A′ is the area of the triangle drawn with dashed lines.
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where r represents the displacement between the cell centre and the cell edge in question.
The gradient is estimated from the values at surrounding nodes using a planar approximation,
e.g.:

@h
@x

≈ 1
2A′ (hj(yk − yl) + hk(yl − yj) + hl(yj − yk)) (10)

A′ is the area of the triangle joining neighbouring cell centres, hj, hk and hl are the depths
at the three neighbouring cells, and yj, yk and yl are the y co-ordinates of the centres
of the neighbouring cells. The �rst-order scheme uses no information about the form of
the �nite volume mesh when interpolating variables, and its accuracy decreases for irregular
meshes containing elements of various sizes. The second-order scheme gives more accurate
estimates of the integrated gradients which are far less dependent on the arrangement of
the mesh.

2.2. Momentum equation

In integrating the momentum equation over a �nite volume, the advection term is the most
troublesome. The bed elevation and depth gradients can be treated by the same �rst- and
second-order schemes as the �ow divergence in the continuity equation. Using the same
scheme for the bed elevation and depth gradients also ensures that a horizontal water free
surface generates no spurious velocities that can arise from di�erences in the treatment of
these two terms [3, 30]. The friction term is easily dealt with by replacing u and h with their
element-averaged quantities. The advection term requires special attention.
The term is rewritten in component form

(u·∇)u=



u
@u
@x
+ v

@u
@y

u
@v
@x
+ v

@v
@y


 (11)

The piecewise constant nature of u and v is then used to make an approximation to the
integral of the advection terms over an element, for example the x-component becoming

∫
�

(
u
@u
@x
+ v

@u
@y

)
d�≈ ui

∫
�

@u
@x
d� + �i

∫
�

@u
@y

d� = ui
∫
�
unx d� + �i

∫
�
uny d� (12)

This is a non-conservative form of the advection term, in contrast to the conservative forms
generally used in �nite volume applications. In this respect, the model approach is similar to
a �rst-order �nite element approach using piecewise uniform approximation. Averaging the
�uxes for the left and right sides of an edge (as for the �rst-order scheme above) gives the
�nite volume approximation for the x-component of the advection term as

ui
2
(Lij(nx)ij(ui + uj) + Lik(nx)ik(ui + uk) + Lil(nx)il(ui + ul))

+
�i
2
(Lij(ny)ij(ui + uj) + Lik(ny)ik(ui + uk) + Lil(ny)il(ui + ul)) (13)
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Figure 3. Upwinding for advection terms. In this case r is a vector pointing in the upstream direction.

This gives a �rst-order accurate estimate for the advection term. To promote model stability
and prevent spurious oscillations in the solution this term is now upwinded by instead using
a weighted mean of the left and right �uxes, for example,

Lijuinx
2

(�−ui + �+uj) +
Lijviny
2

(�−ui + �+uj) (14)

The weighting factors �± are de�ned in terms of the upwind direction s and the vector joining
the centroids of the two elements, xi and xj (Figure 3):

�±=1± s·(xj − xi)|xj − xi| (15)

Thus, the �ux across the boundary is biased towards j if the jth element lies upwind of the
ith element. The upwind direction s is taken from the velocity vector at the centre of the cell.
The e�ect of the upwinding is adjusted using the magnitude of s (∈ [0; 1]). A magnitude of
0.5 was found to give satisfactory results for a wide range of sub-critical �ow conditions.

2.3. Boundary conditions

Three types of boundary are de�ned: a closed (slip wall) boundary, one with an imposed
�ow rate and one with imposed �ow depth. As the �ux across an element boundary is
calculated in terms of the solutions on either side of the boundary, boundary conditions are
used to determine solution values outside the domain. De�ning a local co-ordinate system
such that u′ and v′ are velocity components normal to and parallel with the boundary, and
using subscripts L and R to denote the solution outside and inside the boundary respectively,
the slip wall boundary condition can be written

hL = hR
u′L =0
v′L = v

′
R

(16)
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Thus, the boundary condition implies that the depths on either side of the boundary are equal,
the component of velocity normal to the edge is zero, and the components parallel to the edge
are equal. u′ and v′ are then transformed back into the global co-ordinate system, allowing
expressions such as Equation (8) to be used to calculate the �ux across an element edge
when there is no neighbouring element on the other side of the edge. The values of h, u and
v are also used in the momentum equation. For an open boundary with an imposed �owrate,
the boundary conditions are

hL = hR

u′L =
qimposed
hR

v′L =0

(17)

For an imposed depth boundary the conditions are

hL = himposed
u′L = u

′
R

v′L = v
′
R

(18)

These three types of boundary condition are adequate for dealing with a wide range of mod-
elling problems, such as imposed tidal elevations for estuarine modelling, impermeable bound-
aries for the edge of the domain and imposed �uxes, for example from depth and velocity
measurements for �uvial modelling. Imposed total �ux (e.g. from a rated section) can be dealt
with by partitioning the �ux appropriately between boundary elements.

2.4. Time development and solution

Time derivative terms are discretized using �nite di�erences in an implicit scheme, which
can then be combined with the spatial integration of the �uxes, e.g. from Equation [7]. The
continuity equation for example becomes for element i with neighbours j, k and l:

hn+1i − hni
Ai�t

+
�
2
((hni u

n
i + h

n
j u
n
j )(nx)ij + (h

n
i v
n
i + h

n
j v
n
j )(ny)ij)

+
�
2
((hni u

n
i + h

n
ku
n
k)(nx)ik + (h

n
i v
n
i + h

n
kv
n
k)(ny)ik)

+
�
2
((hni u

n
i + h

n
l u
n
l )(nx)il + (h

n
i v
n
i + h

n
l v
n
l )(ny)il)

+
(1− �)
2

((hn+1i un+1i + hn+1j un+1j )(nx)ij + (hn+1i vn+1i + hn+1j vn+1j )(ny)ij)

+
(1− �)
2

((hn+1i un+1i + hn+1k un+1k )(nx)ik + (hn+1i vn+1i + hn+1k vn+1k )(ny)ik)

+
(1− �)
2

((hn+1i un+1i + hn+1l un+1l )(nx)il + (hn+1i vn+1i + hn+1l vn+1l )(ny)il)=0 (19)
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Subscripts refer to element numbers, superscripts to time steps and � is an implicitation
factor which varies between 0 for an explicit model and 1 for a fully implicit model. Similar
expressions are found for the time development of the momentum equation. Throughout the
rest of the paper a default value of 1 is assumed for �, giving a fully implicit method. The
non-linear system is solved for iteratively using Newton’s method, each iteration yielding a
linear system with coe�cients given by the Jacobian matrix. This linear system is solved
using an iterative generalized minimum residual (GMRES) solver [31]. This avoids the need
to invert the Jacobian matrix (a costly O(N 3) process), and we need only compute the product
of the Jacobian and a vector in the model subspace. This is performed using a second-order
accurate �nite di�erence approximation. For example, expanding the function g about u, the
product J·w, where J= @g=@u and w is an arbitrary vector, is approximated as

J·w≈ g(u+ �w)− g(u − �w)
2�

(20)

where � is some number chosen to be small enough to make the �nite di�erence approximation
accurate, but large enough to avoid the e�ects of rounding errors in the calculation. Thus,
there is no requirement to store the full Jacobian, making a signi�cant saving in storage and
coding is simpli�ed since the elements of the Jacobian do not have to be found explicitly.
This second order approximation is preferable to the �rst-order equivalent, still only requiring
two function evaluations, but allowing a much larger value of � to be used and thus reducing
rounding errors considerably. The solution scheme is O(N 1:3) in time and O(N ) in storage,
allowing large meshes to be used. The model is stable with time steps up to ∼50s for typical
�uvial applications with elements a few 10m across, although in some cases longer time steps
do not necessarily lead to faster computation if the number of Newton–Raphson and GMRES
iterations increases signi�cantly.

2.5. Wetting and drying

The presence of low topographic slopes in �oodplain and estuarine environments mean that
many situations involve a moving boundary problem, or in the case of steady-state calculations
a free boundary problem. In this case we deal with the wet/dry boundary using a �xed
computational mesh, and use an algorithm to deal with elements switching between wet and
dry states. Three types of elements can be identi�ed [19] (Figure 4): a tidal wetting element,
a drying element and a dam break element. In keeping with the simple approach adopted so
far, rather than using a treatment of the Riemann problem with zero depth on one side [2],
a simple element masking scheme is used, similar to that of Reference [3]. Dry elements are
excluded from the computation, and the wetting and drying algorithm is implemented at each
time step to update the element mask, and to redistribute water in vicinity of the shoreline if
necessary to ensure mass conservation.
A tidal wetting element is detected when an element has a higher free surface but lower bed

elevation than its dry neighbour. The new water depths in the two cells are then calculated
to give the same free surface elevation in the two cells and the same total water volume as
before:

hn+1i + zi = hn+1j + zj (21)

hni Ai + h
n
jAj = h

n+1
i Ai + hn+1j Aj (22)
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Figure 4. Three types of wetting=drying elements. In a tidal wetting element (a), when the free surface
in the wet element exceeds the bed elevation of the dry element by 2TDry, the water in the wet cell is
distributed between the two cells to give a horizontal free surface. In a drying cell (b), the water is
removed when the depth drops below TDry and redistributed to neighbouring wet cells. In a dam break
element (c), when the depth of a shoreline cell exceeds TDam the water is redistributed to give equal

water depths in the cells.

These simultaneous equations can then be solved for the unknown updated depths hn+1i and
hn+1j . The �ow velocity in the newly wetted cell is set to 0, and the velocity in the previously
wet cell is una�ected. Model stability is improved and the oscillation of cells between wet
and dry states prevented if it is ensured that the new water depth in the previously dry cell
is above the drying threshold (see below), as this prevents a cell oscillating between wet
and dry states at every time step. In practice this is done by only wetting the element if
the free surface height of the wet element exceeds the bed elevation of the dry elements by
approximately twice the drying threshold, so that hn+1i is greater than the drying threshold. If
the dry element has two wet neighbours, then (21) and (22) are solved using the wet element
with the highest free surface. As with any model dealing with depths tending to zero at the
shoreline, there is always the problem of the �ow regime in an element switching from super-
to sub-critical as the �ow depth increases. This may lead to numerical instabilities, especially
for this model which is not designed to handle super-critical �ows. In practice this problem
was not observed in any of the test cases covered in this paper, but may manifest itself in
modelling other �ow conditions.
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A drying element is simply identi�ed when its water depth drops below a threshold, TDry.
The element is then masked and the water contained moved to the neighbouring wet element
with the lowest free surface. The threshold value required depends on the rate at which water
levels change and the model time step, as too small a value will mean that a wet element
may dry out completely in one time step. The threshold is given therefore by

TDry¿
@h
@t
�t (23)

@h=@t can be estimated from the model boundary conditions, but since topographic features
may induce rapid changes in depth this may need to be adjusted through trial and error.
Typical values are 10−4–10−3.
Although the SFV model is not designed for simulating dam breaks, dam break-type wetting

elements, where a wetting front propagates down slope, may occur in �ood and estuarine �ows
due to uneven topography. Dam break-type elements may therefore have to be dealt with even
for problems which are chie�y made up of tidal wetting elements, and dam break elements
make up a small minority of those on the wetting front. These are identi�ed when a wet
element with water depth above a threshold TDam is next to a dry element with a lower bed
elevation. In this case, a similar scheme to that used for the tidal wetting element is employed,
with the volume of water in the two elements being conserved, but the water depths (rather
than free surface elevations) being made equal in the two cells. To ensure these cells do not
immediately dry out again, TDam is chosen as approximately 2TDry. This allows an element
with bed elevation lower than the water free surface height in a neighbouring element to be
wetted and thus allows the wetting front to advance down a slope. It is, however, a very
crude approach and cannot be expected to reproduce accurately the hydraulics of a wetting
front propagating downwards.

3. MODEL TESTING

Although ultimately the SFV model should be tested against validation data from real environ-
mental �ows, in this paper an initial veri�cation is performed against a number of analytical
solutions of the shallow water equations. Testing against analytical solutions [8, 32] allows
the model’s numerical performance to be validated independently of process representation
issues. The accuracy of the model in generating solutions to the shallow water equations can
thus be rigorously assessed.

3.1. Flow round a circular bend

The steady-state shallow water equations can be written in cylindrical polar co-ordinates (r; ’)
in terms of the �ow depth h and the radial and tangential velocity components ur and u’ [8]:

1
r
@
@r
(rurh) +

1
r
@
@’
(hu’) = 0 (24)
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

ur
@ur
@r

− u2’
r
+
u’
r
@ur
@’

+ g
@(h+ z)
@r

+
gn2|u|ur
h4=3

ur
@u’
@r

− u’ @u’@’ +
u’ur
r
+
g
r
@(h+ z)
@’

+
gn2|u|u’
h4=3


 = 0 (25)

For uniform �ow round a circular bend with uniform down reach slope, there is no dependence
on ’, and �ow is purely tangential, so the momentum equation becomes two coupled ordinary
di�erential equations for h(r) and u’(r):

g
dh
dr

− u2’
r
=0 (26)

g
r
dz
d’

+
gn2u2’
h4=3

= 0 (27)

Substituting (27) into (26) gives the following solutions for the water depth and velocities:

h=
(
C − 1

3gn2r
dz
d’

)−3
(28)

u’ =
(−h4=3
n2r

dz
d’

)
(29)

The constant C is determined from the boundary conditions for the problem, in this case
an in�ow given at the upper end of the reach. Equation (26) can be interpreted as equating
centripetal acceleration with the radial component of the free surface gradient, and (27) as
a balance between free surface gradient in the downstream direction and friction terms. A
comparison between (28) and (29) and the model results will therefore test the model’s
treatment of free surface gradient terms, friction and the cross stream component of the
advection term.
The model was tested on a series of meshes (one of which is shown in Figure 5) of

width 20 m and inner radius 50 m, with an in�ow of 40 m3 s−1, Manning’s n of 0:03 m−1=3 s
and dz=d’=−0:06m rad−1, giving a mean water depth of 1:46m. These values were chosen
as representative of a small meandering river �owing at bankful discharge. Model predicted
�ow depth and analytical solution for the mesh shown in Figure 5 is given in Figure 6,
showing that the model predicts well the change in depth across the channel, but with a
systematic overprediction of depth by ∼1 cm. The result was obtained using second-order
spatial interpolation and an upwinding factor of 0.5. Figure 7 plots the mean error in predicted
�ow depth as a function of the angular deviation of the elements (element size divided
by bend radius), along with results for the TELEMAC2-D �nite element model [8], for
both �rst- and second-order spatial interpolation. TELEMAC-2D is a �nite element model
solving the 2D shallow water equations on unstructured meshes of triangular elements, and is
used here as a comparison because of the number of validation studies undertaken using the
model. The SFV model developed here is a considerable improvement over TELEMAC2-D,
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Figure 5. Example of computational mesh used to model �ow round a circular bend.

Figure 6. SFV predictions (�) and analytical solution (solid line)
for �ow depth against radius for �ow round a circular bend.

giving errors of ¡20 mm for all meshes. The results are also less strongly mesh dependent
than for TELEMAC2-D. Some improvement is seen for the SFV model using second-order
interpolation when compared with �rst-order.

3.2. Flow over an uneven bed

In this case we examine 1D �ow over an uneven bed, and thus test the model’s treatment of
the free surface gradient and advection terms in the �ow direction. For steady-state 1D �ow,
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Figure 7. Error in SFV predictions when compared to analytical solutions as a function of element
angular deviation for �ow round a circular bend. The results for two versions of the TELEMAC-2D
�nite element model, using a streamline upwind Petrov–Galerkin (SUPG) scheme and a �ux conservative

transport (FCT) scheme, are also shown.

the continuity equation implies that uh (= q) is constant along the reach, and if the friction
term is set to zero the momentum equation can be written as

u
du
dx
+ g

dh
dx
+ g

dz
dx
=0 (30)

Integrating with respect to x gives a form of the Bernoulli equation:

q2

2h2
+ gh+ gz + C=0 (31)

The upstream boundary condition for the problem �xes q, and an imposed water depth at
one point of the reach �xes the constant of integration C. Thus given appropriate boundary
conditions, (31) can be used to �nd the analytical solution to the 1D shallow water equations
at each point over a varying topography. The model is tested over a backward facing slope
40m in length and a backward facing step, in a 500m×100m rectangular domain discretized
into 10 m elements. Boundary conditions were chosen to ensure a subcritical �ow regime
throughout the domain, with q=1:0 m2 s−1 and depth at the downstream end �xed at 0:5 m,
resulting in a depth upstream of 0:889m. The results are given in Figure 8, for the 100m in
the region of the step, with points plotted for all elements across the domain. Errors increase
from ¡30 mm for the 40 m slope up to ¡100 mm for the step, although in the latter case
this error �gure tends to understate model accuracy because of the discontinuity in the model
free surface. Oscillations in the free surface are apparent downstream of the step, and model
errors in the region of the step have propagated upstream to give a ∼5 mm error in the
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Figure 8. The results of SFV model and analytical solution for �ow over a back-
ward facing slope (lower left) and a backward facing step (lower right). The SFV
solution (points) is compared to the analytical solution (solid line) in the mid-
dle plots. Absolute error is shown in the top plots (note di�erent scales used

for slope and step errors).

remainder of the reach. We would expect such persistent errors to be eliminated in a model
with bed friction terms. The results are encouraging: even for step changes in topography,
the model predicts the free surface reasonably in the region of the step, and predicts well
the location and magnitude of the change in free surface elevation, and oscillations generated
in the solution only a�ect a region 1 or 2 elements wide near the step. Figure 9 shows the
results for an equivalent case, but with a Manning’s n value of 0:01 m−1=3 s. The bed either
side of the step has the slope required to give uniform �ow conditions at the same depths
as for the frictionless case. The results show errors in the region of the step of the same
magnitude as for the frictionless case, but errors upstream of the step have been reduced to
∼1 mm.

3.3. Floodwave propagation

Although analytical solutions for time-varying problems are scarce, we can still check that
the model reproduces the expected dynamic behaviour, and that the model produces mass
conservative solutions. The model is therefore tested using a typical modelling scenario of a
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Figure 9. SFV model results for �ow over a backward facing step with uniform bed slopes on either
side, and friction terms included.

�oodwave travelling down a meandering river reach, using �ve structured and unstructured
meshes (Figure 10) as used in Reference [8]. Meshes 1–3 are structured with a regular pattern
of triangular elements. Meshes 4 and 5 are unstructured. Meshes 2 and 3 use a curvature-
dependent generation strategy designed to produce smaller elements in regions of high channel
curvature. The reach is 1 km long, approximately 20m wide, has a down reach slope of 10−3

and a Manning’s n of 0:03m−1=3 s. Model predictions of steady-state �ow depth as a function
of down reach distance are shown in Figure 11 for an in�ow of 20m3 s−1. The results show
good agreement (∼2 cm) between solutions for all meshes except for number 2 (the lowest
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Mesh 1

Mesh 2 Mesh 3

Mesh 4 Mesh 5

Figure 10. Computational meshes for the meandering river reach. Details of a bend section
are shown for meshes 2–5.

Figure 11. Flow depth (averaged across the channel) along the reach predicted by SFV for a
steady-state in�ow of 20 m3 s−1.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:1231–1255



1248 M. HORRITT

Figure 12. Flow depth along the reach predicted by SFV after the �oodwave has propagated half-way
down the reach. Note the change in vertical scale from Figure 10.

Table I. Mass balance errors for steady state and dynamic simulations for
the 1 km river reach.

Mesh Steady-state error (m3 s−1) Dynamic error (m3 s−1)

1 −5:35×10−5 −0:186
2 −2:38×10−5 −0:237
3 −3:42×10−5 −0:0937
4 −3:91×10−5 −0:0460
5 −4:50×10−5 −0:116

resolution), which predicts water levels ∼4 cm higher. The dynamic behaviour is tested using
an input hydrograph that rises up to 30 m3 s−1 and back down again over a time of 200 s.
The predicted depths as the �oodwave generated by the hydrograph has travelled half-way
down the reach are shown in Figure 12. The same response as for the steady-state case is
seen, with mesh two predicting water elevations to be ∼4 cm higher than the others. Table I
gives the mass balance errors for the simulations, as the instantaneous maximum volume lost
(negative values) or gained (positive values) per unit time:

Qerror =
Vn+1 − Vn

�t
−Qin +Qout (32)

Qin is the imposed �owrate, Qout is the �ow measured out of the model domain and Vn

and Vn+1 are the volumes of water in the domain at consecutive time steps. For steady-state
simulations the mass balance error is calculated as the di�erence between the in�ow and the
out�ow when the steady state is reached (i.e. volume is unchanging). The largest error occurs
for mesh 2, but this value is still ¡1% of the total in�ow. Compared with the results of a
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TELEMAC-2D model of the same reach [8], SFV gives larger (but still acceptable) global
mass balance errors, but the convergence between simulations using di�erent meshes is far
better (∼2 cm compared with 10–15 cm for TELEMAC-2D).

3.4. Wetting and drying

SFVs treatment of moving boundary problems is �rst tested using a beach run up problem
[32]. If a uniform bed slope S0 is assumed, (1) and (2) can be written in a 1D form as

@u
@t
+ u

@u
@x
+ gS0 + g

@h
@x
+
gn2u|u|
h4=3

= 0 (33)

@h
@t
+
@uh
@x

= 0 (34)

Purely advective solutions of the form h(x − ct) can then be substituted, representing a wet-
ting front propagating up the beach in response to an increasing water depth at the seaward
boundary, while maintaining a constant pro�le. Equation (34) implies that the front propa-
gation velocity c and the �ow velocity u are identical, and [33] then becomes an ordinary
di�erential equation

S0 +
@h
@x
+
n2u2

h4=3
= 0 (35)

This equation can the be solved using relatively simple numerical techniques on a �ne grid,
such as a fourth-order Runge–Kutta scheme. This gives an accurate solution against which
SFV can be tested. The solution can also be used to generate boundary conditions for SFV,
which asymptotically tend towards a uniformly increasing water depth with time. The results
from the Runge–Kutta scheme (implemented using a 5 m grid) and SFV are compared for
three inundation rates and three SFV mesh sizes in Table II. The height errors (measured as
RMS values at the centroids of the SFV elements) are comparable to those for TELEMAC-
2D using a similar element masking wetting and drying algorithm, but with mass balance
errors 1–2 orders of magnitude smaller for SFV. The results are also relatively insensitive

Table II. Performance of SFV model in reproducing wetting front pro�le for beach run up problem.

Mesh size Time step Inundation rate Front velocity Height error Mass balance
Simulation (m) (s) (m s−1) (m s−1) (mm) error (m3 s−1)

1 200 2.0 1×10−4 0.1 1.19 0.01
2 100 2.0 1×10−4 0.1 0.622 0.09
3 50 2.0 1×10−4 0.1 0.496 5×10−3
4 200 2.0 5×10−4 0.5 8.07 0.26
5 100 2.0 5×10−4 0.5 6.51 0.42
6 50 2.0 5×10−4 0.5 6.20 0.36
7 200 0.5 1×10−3 1.0 20.9 0.26
8 100 0.5 1×10−3 1.0 19.8 1.71
9 50 0.25 1×10−3 1.0 17.6 0.095
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Figure 13. Water surface pro�les predicted by SFV using the 200 m mesh (�) and
the Ruge–Kutta method (solid line) for the beach wetting problem for three inunda-
tion rates: 1×10−4 m3 s−1 (top), 5×10−4 m3 s−1 (middle) and 1×10−3 m3 s−1 (bottom).

Note the di�erent vertical scales for the three inundation rates.

to the mesh resolution. Figure 13 shows free surface pro�les for the SFV and Runge–Kutta
techniques for the 200 m mesh for the three inundation rates. For the lowest rate, waves
can be observed propagating in from the shoreline, possibly caused by the sudden motion in
the shoreline as elements become wet. These waves are not evident for the faster inundation
rates, where SFV captures well the draw down of the free surface towards the shoreline. While
predicting the form of the water surface accurately, SFV has di�culty reproducing the correct
near shoreline velocity vectors (Figure 14), which are strongly in�uenced by the mesh form

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:1231–1255



SIMPLE FINITE VOLUME MODEL OF SHALLOW WATER FLOW 1251

1
0
cm

2
0
c
m

4
0
cm

6
0
c
m

8
0
cm

Figure 14. Flow vectors and �ow depth predicted by SFV for inundation at a rate of 1×10−3m3s−1
over the 200 m mesh. The 10 cm depth contour predicted by the Runge–Kutta method

is also shown (dashed vertical line).

as elements become wet. The 10 cm depth contour predicted by the Runge–Kutta solution is
also shown in Figure 14, and while its position along the beach is well predicted in the mean
by SFV, the velocity variations produce some free surface variations that increase towards
the shoreline. While no equivalent 1D advective solution exists for the drying case, SFV can
still be tested in a qualitative fashion. Figure 15 shows the pro�les for a drying simulation
where the boundary condition was an imposed water surface dropping at a continuous rate
of 1×10−4 m s−1. It shows the shoreline retreating smoothly down the beach with a draw up
curve developing near the shoreline. Again variations in velocity vectors in the vicinity of the
shoreline are observed as for the wetting case. The maximum mass balance error in this case
was 0:013 m3 s−1.

3.5. Computational e�ciency

The computational e�ciency of the SFV scheme was tested on a rectangular 1000 m×500 m
mesh with 50 m elements, and simulated uniform �ow conditions with velocity 1:0 m s−1

and depth 1:0 m. Simulations were started with zero �ow velocity and allowed to reach con-
vergence, using a variety of time steps and implicitation factors corresponding to explicit,
semi-implicit and fully implicit time development schemes, for �rst- and second-order spatial
discretizations. Convergence was achieved in all cases after approximately 3700 s simulated
time for �rst-order and 2900 s for second-order schemes. The results of this e�ciency anal-
ysis are presented in Figure 16, showing the computational times required for the various
spatial and temporal schemes and time steps. The results show that for the �rst-order scheme
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Figure 15. Free surface pro�les predicted by SFV for beach drying at a rate of 1×10−4 m3 s−1.

Figure 16. Computation times for SFV model using various implicit and explicit
approaches and spatial integrations.

semi-implicit time development is most e�cient, but that advantage is reduced for second-
order spatial integration. Further reductions in computation times may be possible for the
implicit schemes by re�nement of the GMRES solver (e.g. use of preconditioning).
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4. DISCUSSION

The comparison between SFV and the analytical solutions has shown that for these problems
SFV is giving broadly satisfactory results. The mass balance errors produced by SFV are also
generally encouraging, although no universally accepted criteria for acceptable mass balance
errors exist. The greatest error encountered for the beach wetting problem, for example, is
1:71 m3 s−1, which when taken in context represents only ∼0:1% of the total �owrate into
the reach at that time. Similarly for the �ow along the river reach, errors are ¡1% of the
total �ow into the reach. While such errors are certainly above the level expected if they
were solely due to rounding error for example, they are at a level which is likely to be much
less than the error in the boundary conditions dictating the �ow into the model domain. This
indicated that SFV’s mass balance behaviour is acceptable. The errors are, however, probably
greater than those due to inadequate process representation in the continuity equation, which
neglects �uxes due to evaporation, in�ltration, surface run o�, etc. The river reach error for
example is equivalent to a water loss of ∼40 mm h−1.
SFV’s performance in these tests seems also to be an improvement over the �nite element

method of TELEMAC-2D. Water levels for �ow round the circular bend and predicted with
greater accuracy by SFV, despite SFV only using a �rst-order accurate advection discretization.
SFV’s stability with respect to changes in mesh resolution is also an improvement over
TELEMAC-2D which exhibits a strong mesh dependence. This is further demonstrated by the
river reach test case where SFV exhibits closer convergence with respect to mesh size than
TELEMAC-2D. The results for the beach wetting problem are also an improvement, with
similar errors in the free surface height but with reduced mass balance errors shown by SFV.
This is despite the less sophisticated solution representation used in SFV, where variables are
assumed to be piecewise constant over each element, as opposed to the linear or quadratic
representation typically used by �nite element methods. This is however, partially o�set by
the smaller distances between element centroids, which are separated by 0.577 times the node
spacing for an equilateral triangular mesh.
Further work required to incorporate features of other models into SFV is required. The in-

clusions of turbulence terms would be advantageous, although the inclusion and
parameterization of turbulence schemes into 2D models is still a subject of debate [10]. A
simple turbulent viscosity model has been built into a 2D �nite volume methodology [21],
but the calculation of second-order spatial gradients from a piecewise linear representation re-
quires care. Higher order schemes such as the k–� model [33] may also have to be used. The
wetting and drying algorithm has also not been fully tested, and may need some re�nement
for modelling moving boundary �ows over complex topography.

5. CONCLUSIONS

A simple �nite volume model for 2D shallow water �ow has been developed and tested
against analytical solutions of the governing equations and the results of a �nite element
model. The model exhibits many desirable properties:

• Accurate prediction of the free surface of analytical solution for meandering channel
�ow.
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• Good convergence properties with respect to computational mesh re�nement.
• Accurate representation of free surface response to bed topography.
• Correctly handling wetting and drying fronts with only low levels of numerical oscilla-
tions near the shoreline.

The results indicate that this simple approach can be very e�ective in modelling sub-critical
shallow water �ows.
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